17 research outputs found

    A proposed framework of an interactive semi-virtual environment for enhanced education of children with autism spectrum disorders

    Get PDF
    Education of people with special needs has recently been considered as a key element in the field of medical education. Recent development in the area of information and communication technologies may enable development of collaborative interactive environments which facilitate early stage education and provide specialists with robust tools indicating the person's autism spectrum disorder level. Towards the goal of establishing an enhanced learning environment for children with autism this paper attempts to provide a framework of a semi-controlled real-world environment used for the daily education of an autistic person according to the scenarios selected by the specialists. The proposed framework employs both real-world objects and virtual environments equipped with humanoids able to provide emotional feedback and to demonstrate empathy. Potential examples and usage scenarios for such environments are also described

    A Framework Combining Delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to Study Emotional Processing

    Get PDF
    Event-Related Potentials (ERPs) or Event-Related Oscillations (EROs) have been widely used to study emotional processing, mainly on the theta and gamma frequency bands. However, the role of the slow (delta) waves has been largely ignored. The aim of this study is to provide a framework that combines EROs with Event-Related Desynchronization (ERD)/Event-Related Synchronization (ERS), and peak amplitude analysis of delta activity, evoked by the passive viewing of emotionally evocative pictures. Results showed that this kind of approach is sensitive to the effects of gender, valence, and arousal, as well as, the study of interhemispherical disparity, as the two-brain hemispheres interplay roles in the detailed discrimination of gender. Valence effects are recovered in both the central electrodes as well as in the hemisphere interactions. These findings suggest that the temporal patterns of delta activity and the alterations of delta energy may contribute to the study of emotional processing. Finally the results depict the improved sensitivity of the proposed framework in comparison to the traditional ERP techniques, thereby delineating the need for further development of new methodologies to study slow brain frequencies

    Towards a hybrid approach to unveil the Chimaira of neurosciences : philosophy, aperiodic activity and the neural correlates of consciousness

    Get PDF
    Contemporary theories of consciousness, although very efficient in postulating testable hypotheses, seem to either neglect its relational aspect or to have a profound difficulty in operationalizing this aspect in a measurable manner. We further argue that the analysis of periodic brain activity is inadequate to reveal consciousness’s subjective facet. This creates an important epistemic gap in the quest for the neural correlates of consciousness. We suggest a possible solution to bridge this gap, by analysing aperiodic brain activity. We further argue for the imperative need to inform neuroscientific theories of consciousness with relevant philosophical endeavours, in an effort to define, and therefore operationalise, consciousness thoroughly

    Information and communication technologies (ICT) for enhanced education of children with autism spectrum disorders

    Get PDF
    Recent developments in the area of information and communication technologies for people with special needs has led to significant changes in the way specialists and educators can address the daily impairments posed by people with abnormal behaviour, such as autism. Computer based educative methods are increasingly being considered as a key tool for educating people with autistic spectrum disorders (ASDs). Recent research has demonstrated that persons with autism, especially children, enjoy interacting with computers particularly as they are free from the expectations and judgments that make social interaction problematic. Virtual Environments (VEs), usually accompanied by three dimensional (3D) humanoid characters have been proven to play an essential role in special education and social interventions. Emotionally expressive avatars (a computer user’s representation of himself/ herself or alter ego), can advance the quality of tutor-learner interaction, with unobtrusive wireless sensors integrating an autistic person’s feedback and reaction. In this paper we review some developments in information and communication technology (ICT) for managing children with ASDs and also describe the approach we are taking to developing a platform to enhance and mediate the teacher-child educational process

    Functional disorganization of small-world brain networks in mild Alzheimer's disease and amnestic Mild cognitive impairment:An EEG study using Relative Wavelet Entropy (RWE)

    Get PDF
    Previous neuroscientific findings have linked Alzheimer's disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation

    Functional Re-organization of Cortical Networks of Senior Citizens After a 24-Week Traditional Dance Program

    Get PDF
    Neuroscience is developing rapidly by providing a variety of modern tools for analyzing the functional interactions of the brain and detection of pathological deviations due to neurodegeneration. The present study argues that the induction of neuroplasticity of the mature human brain leads to the prevention of dementia. Promising solution seems to be the dance programs because they combine cognitive and physical activity in a pleasant way. So, we investigated whether the traditional Greek dances can improve the cognitive, physical and functional status of the elderly always aiming at promoting active and healthy aging. Forty-four participants were randomly assigned equally to the training group and an active control group. The duration of the program was 6 months. Also, the participants were evaluated for their physical status and through an electroencephalographic (EEG) examination at rest (eyes-closed condition). The EEG testing was performed 1–14 days before (pre) and after (post) the training. Cortical network analysis was applied by modeling the cortex through a generic anatomical model of 20,000 fixed dipoles. These were grouped into 512 cortical regions of interest (ROIs). High quality, artifact-free data resulting from an elaborate pre-processing pipeline were segmented into multiple, 30 s of continuous epochs. Then, functional connectivity among those ROIs was performed for each epoch through the relative wavelet entropy (RWE). Synchronization matrices were computed and then thresholded in order to provide binary, directed cortical networks of various density ranges. The results showed that the dance training improved optimal network performance as estimated by the small-world property. Further analysis demonstrated that there were also local network changes resulting in better information flow and functional re-organization of the network nodes. These results indicate the application of the dance training as a possible non-pharmacological intervention for promoting mental and physical well-being of senior citizens. Our results were also compared with a combination of computerized cognitive and physical training, which has already been demonstrated to induce neuroplasticity (LLM Care)

    Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics

    No full text
    Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the “ENVIHAB” facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging
    corecore